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The Fermi surface and pseudopotentials of aluminium 
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USA 

Received 23 February 1993 

Abstract. The accurately determined energy levels ak the W point of the FCC Brillouin zone 
obtained from low-temperalure galvanomet@c measurements of the Fermi surface of aluminium 
are used to d e t d e  an empirical local pseudopotential and to test the precision of the 
stv ldard scheme for calculations of band structure. While satisfactoiy for cohesive and suuclural 
properties. the standard scheme appears to reproduce the third-zone Fermi surface dimensions 
and topology rather poorly. Since there still remains some flexibility in the definition of ab initio 
pseudopotentials, it is suggested that agreement ~4th the major cohesive and structural properties 
on be maintained. but that wilh relatively minor adjustment Fermi surface properties can also 
he reprcduced. This notion is illushated for the empirical local pseudopotential which is applied 
to the evaluation of the interatomic pair potential (which is found to be in good agreement with 
other calculaied pair potentials) and also 0 a redetermination of the conductivity of molten 
aluminium which reveals rather clearly the limitations of the fiat-order Born approximtion. 

1. htrodnction 

Calculation of one-electron properties of condensed matter is an important first step in 
the reduction of a starting many-body problem. There are several approaches, some of 
which make use of the density functional theory (Dm) of the electron gas within the Kohn- 
Sham formulation [I]. Since the exchange-correlation functional is not known exactly, 
approximations are used, a prominent one being the local density approximation (LDA). 
To calculate the properties of systems involving more than a very few atoms, it is often 
necessary to use pseudopotentials to model the interaction between electrons and the ionic 
cores [Z, 31. These have a number of major advantages over the full coulombic potentials. 
Specifically, they allow the core electrons to be treated implicitly, thus reducing the number 
of wavefunctions that have to be handled, and they can be made smooth, so that they can be 
used subsequently with plane-wave basis sets small enough to be handled without intensive 
computation. This procedure, when used with nb initio pseudopotentials [4-8], will be 
referred to from here on as the standard scheme. 

Although the standard scheme is often used with success, there remain questions 
concerning its accuracy, both for total energies, and for singleparticle properties. However, 
the problem is actually more acute for the single-particle properties. This follows from the 
observation that in principle DFT can give exact ground-state energies, but may not give 
correct quasi-particle energies (when used withiin the Kohn-Sham formulation), such as are 
found from Fermi surface measurements [9-131. It is thus of some interest to investigate 
the errors in the singleparticle energies that result from the standard scheme. Note that 
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only errors produced by the total set of approximations (such as the difference between 
measured and calculated band structure) will be considered. The individual conhibutions 
can only be separated out using a more detailed approach than that presented here. 

In this paper the single-particle energy levels near the Fermi energy of aluminium are 
taken as an example to be investigated. The method used is as follows. First, the energy 
levels close to the Fermi surface obtained from experiment are determined (this has, in 
fact, already been carried out 1141). Second, an empirical local pseudopotential is found 
which, when used with a large plane-wave basis set that leads to completely converged 
results, accurately reproduces the measured Fermi surface structure. The point is simply 
to demonstrate that a simple single-particle Hamiltonian reproducing the single-particle 
levels in crystalline aluminium reliably exists; it does not say that it is unique. Third, 
the energy levels near the Fermi surface are then calculated using the standard scheme 
(with the pseudopotentials of H a m m  [SI), and these are also compared with the known 
experimental results. It is found that the results are in poor agreement with experiment, 
which suggests that pseudopotentials might still be improved if experimental information 
about the Fermi surface were included in the process of constlucting them, a point of view 
that was taken in the early development of pseudopotentials. As is well known, there is 
some flexibility in the construction of these quantities, and the refinements being proposed 
are to be carried out within this variability; the overall success of the current schemes is 
therefore not compromised. 

Finally, the empirical pseudopotential is used to calculate two properties of liquid 
aluminium (an interatomic pair potential, and the electrical conductivity) using simple 
theories. The interatomic potential is found to agree well with values previously calculated 
by other authors, and is a further confirmation of the accuracy of the fitted pseudopotential. 
The electrical conductivity, determined by a Born approximation (the Ziman theory), is 
found to agree poorly with experiment, which confirms that the simple scattering theory is 
inadequate for the problem. 
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2. Experimental results 

The Fermi surface of aluminium (as well as of many other simple metals) has been measured 
with great accuracy. In particular there are quite precisely determined cross sections in the 
third zone whose areas are less than 10-3xRf. Since the Fermi surface for a particular 
band (or zone) is simply that set of points in the first Brillouin zone, translated from other 
zones if needed, at which the single-electron levels in that band (or zone) possess the Fermi 
energy, the existence of these precise dimensions places considerable constraints on the 
band structure near the Fermi energy. 

The de Haas-van Alphen measurements of the Fermi surface of aluminium have already 
been analysed in detail [14] and the levels at the W point (k = (Zn/a)(l, t ,  0)) are 
known very precisely. The analysis was carried out within the framework of the empirical 
pseudopotential method with folding back of the full (infinite by infinite) secular equation, 
as described in the appendiw. Within this approach the band structure near the W point of 
the first irreducible zone can be modelled using a 4 x 4 folded secular equation: 

v2w I 
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where 

To(k, E )  = hzk2/2m - E 

T I ( ~ , E )  = (hZ/2m)k  - ( 2 r / ~ ) ( l , l , I ) ~ - ~  

TXk, E )  = @'/Zm)k - (Zr /u) ( l ,  1, -l)z - E  

Tx(k, E )  = (h2/2m)k - ( h / u ) ( Z ,  0,O)' - E 

provided k is restricted to the irreducible zone (see figure 1). Note that these diagonal terms 
implicitly include other terms from the folding down of an infiniteorder secular equation. 
However, it is also assumed that the terms from folding can still be well modelled by a local 
potential. also yielding a term V w  to be added to the kinetic energy which has the same 
value for each diagonal term. It contributes only a constant offset to the band sfmchue, and 
therefore can be set to zero. In equation (1) VI I I and Vm are proportional to the Fourier 
transform of the effective electron-ion pseudopotentials evaluated at G = ( h / a ) ( l ,  1.1) 
and G = ( 2 r / a ) ( 2 , 0 , 0 )  respectively; they include folding corrections as discussed in the 
appendix. 

Figure 1. Fmt Brillouin wne of the Fcc ~ C N E  
showing Lhe principal points of high symmetry &lining 
the irreducible zone. 

In the analysis of reference [141, VIII and Vm were treated as free parameters, and 
were determined by direct fitting to the measured Fermi surface. Fitting these parameters 
to the experimentally determined third-zone Fermi surface sections gives (with m*/m = 1): 

IVlltl = 0.244 eV (30) 

and 

Vm = 0.765 eV. (3b) 

(From the pressure dependence of the optical properties of aluminium, the sign of Vttl was 
subsequently fixed as positive [151.) Using these the energies of the first four levels at the 
W point of the first BriUouin zone, are easily evaluated using 

Wl = EW + vm + 21VltIl 

w; = EW + vm -21vtt11 (4) 

W, = EW - Vzm (doubly degenerate) 
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where (with V- = 0 as described above) &W = hzk$/2m. From equation (4), the 
levels near W consistent with the experimentally determined Fermi surface can therefore be 
summarized by the statements 
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W, - & = 2.02 eV W; - W, = 1.04 eV. (5) 

It is to these two quantities, experimentally fixed, that the empirical pseudopotential is fitted 
and to which the results of ab initio pseudopotential calculations will be primarily compared. 

3. An empirical pseudopotential 

A local empirical pseudopotential is now determined which, when combined with linear 
screening, will give accurate band structures using the connectivity of the Fermi surface 
as a criterion, and especially the small but critical third-zone dimensions. To illustrate the 
general point being made, the simplest possible model incorporating core cancellation is 
used, namely the empty core pseudopotential defined by 

which contains one free parameter (rc). The value of this effective core radius is chosen 
such that this form can be used to reproduce the empirically determined energy levels at 
W (two numbers). Though this choice is suggested by the fact that the core in aluminium 
is particularly compact and tightly bound, it is important to emphasize that the procedures 
discussed next can be applied to more general choices of pseudopotential. 

The Fourier transform of this pseudopotential (equation (6)) appears in the Hamiltonian 
matrix, and with linear screening included, the corresponding form factor is 

V ( g )  = -(4xZe2/Qq2) cos(qr,)/&(q). (7) 

The screening function used in what follows is that of Hubbard 1161, and is given by 

&) = 1 + m)/[l - g(dn(q)l 

with 

n = ( W w d f ( x ) / x *  

f ( x )  = f + ( 1 - x 2 / 4 x ) ~ n 1 ( ~ + x ) / ( l - x ) l  (8) 

and 

where x = q/(2kf), and the local field correction is g = 1/(2 + l/ax2) with 01 = 
1 + 0.1.58/(rrkfao) which is chosen to satisfy the compressibility sum rule on &(q). Note 
that the assumption that many-electron effects can be incorporated within a linear screening 
approximation is a possible source of error in making a later detailed comparison with ab 
initio potentials. 

The best value of r, is found in the following straightforward manner. A value of r, 
is declared good to the extent that the eigenvalues of the Hamiltonian constructed with the 
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potential of equation (7) and which are characterized by the wavevector kw agree with the 
experimentally determined eigenvalues given in equation (5). Initial upper and lower bounds 
on the best value of r, are found using a basis set (20 Ryd cut-off energy) that is not large 
enough to lead to complete convergence of the eigenvalues with respect to basis set size, 
but which is large enough to provide reliable bounds. The range of r, between the bounds is 
subsequently decreased while using a much larger basis set (80 Ryd cut-off energy), which 
does lead to eigenvalues converged with respect to basis set size. The resulting value of 
r, for aluminium is 0.709 A. The form factor resulting from this procedure is plotted in 
figure 2; it leads to levels with energies of 

Wj - W, = 2.01 eV W; - W, = 1.04 eV (9) 

which are seen to be in excellent agreement with the experimental results, given that there is 
but a single free parameter. Note that a large number of plane waves is needed on account 
of the long range of the pseudopotential used. Figure 3 shows the convergence of the three 
energy levels as a function of plane-wave cut-off energy. 

0.2 

0 1 2 3 4 . 5 6 7 8 9  
q/Kf 

Figure 2. The fitted pseudopotential presented in reciprocal space. 

Agreement for the three principal levels at W does not constitute a particularly stringent 
test by itself; accordingly the bands along a number of symmetry directions were also 
determined, and the results for these are shown in figure 4. They agree well with other 
calculated band structures (see, for example, [17]). It should be pointed out that because 
of its simplicity, the present pseudopotential is not expected to be transferable (there is no 
reason to believe that it would, for instance, give the correct energy levels for an isolated 
atom). However, for the system to which it was fitted, it clearly contains the physically 
relevant information needed to describe the singleparticle energy levels. 

There may, of course, be a small possible source of error in the calculated core radius 
resulting from the use of linear screening (as opposed to full non-linear self-consistency) 
in this simple model. To estimate this, consider the following argument. Imagine that an 
aluminium ion is embedded in a uniform electron gas, and the electron-ion interaction is 
described by a pseudopotential. The Kohn-Sham eigenfunctions for the electrons can be 
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calculated, using perturbation theory, to first order in the total Kohn-Sham potential (which 
includes the pseudopotential, a Hartree term, and an exchangecorrelation term). From 
these eigenfunctions the perturbed electron density can also be calculated, and from this, 
the requisite Kohn-Sham potential. This leads to a linear self-consistent problem for the 
Kohn-Sham potential, the solution to which is the linearly screened potential. The total band 
structure energy (correct to first order in the perturbing potential) can then be calculated. 
The entire process can also be continued to second order in the perturbing potential. It is 
possible to separate the errors in the band structure energy into two components: the error 
in the Hamiltonian (on account of the error in the density used to generate the Kohn-Sham 
potential), and the error in the eigenfunctions (on account of the truncated perturbation 
expansion). It is reasonable to suppose that the two sources lead to errors that may be 
comparable in magnitude since the error in the density exists solely because of errors in 
the eigenfunctions. That is, the error in the band structure energy on account of the error 
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in the screening of the potential ought to be of the same order of magnitude as the error in 
the energy on account of the errors in the eigenfunctions. The latter have been investigated 
for the phonon specmm of aluminium [18], and are found to be of the order of a few per 
cent. This implies an error of corresponding magnitude in the eigenvalues. From this it can 
be concluded that ignoring screening beyond linear order leads to ermrs in the eigenvalues 
of the order of a few per cent. Small as this error may be, it is enough to give the wrong 
Fermi surface. Thus the choice of r, must implicitly include corrections for the non-linear 
screening terms (it is the screened pseudopotential that IS reliable, and not the bare one). 
However, it should be stressed that the change in the core radius, if full self-consistency 
were used, would certainly be small. (In the fitting process a change in r, was found to 
lead to a change in Wl - W3 that corresponds to the same percentage change in the two 
quantities.) 

For the purpose of comparison, it is interesting to note that some values of r, for 
the empty core pseudopotential have been determined for aluminium by other authors using 
quite different methods. A value of r, that purports to give the correct zero-pressure volume 
is 0.304 A [19]; a value obtained from resistivity calculations [201 is r, = 0.590 A. There is 
apparently a wide variation in r,, the value clearly depending on the physical quantity &om 
which the core radius is determined, and the sensitivity of that property to it. However, 
since the band structure is fundamental (in the one-electron picture) the value of 0.709 A 
would seem to be preferred. 

4. Results from the standard scheme 

The energy levels at the W point of the first Brillouin zone can also be calculated using 
the ab initio pseudopotential of Hamann [8], but using the method developed by Teter and 
co-workers [21]. For this calculation, plane waves up to an energy of 32.0 Ryd are used, 
and the calculations are carried out within the local approximation of DFT. A large cell (32 
atoms) is taken, with one special k point selected for evaluating the density. The choice of 
special point k = (2n/a)( i ,  4, a) proved to be adequate, as the cell is large (it is equvalent 
to using the r point with a cell containing 256 atoms). Particular care is taken to treat the 
degeneracies at the Fermi level correctly. 

The levels of interest at the W point me then found in this procedure to be 

W1 - W3 = 1.76 eV ( loa )  

and 

W; - W3 = 1.05 eV. (lob) 

When compared with experiment, the errors in these levels are seen to be about 1% for 
Wi - W3 but 8% for W, - W,. The important point is that even a small shift in the energy 
of the bands in the third zone can actually cause very significant changes in the size of the 
cross section of the Fermi surface, simply because it is already so small (in [I41 it is pointed 
out that an error of just 0.4% in the Fermi energy can lead to a factor of two in the areas of 
the small waist-like sections of the third-zone Fermi surface near W). In the present case, 
the levels at W (see equations (10)) lead to a connectivity of the third-zone Fermi surface 
which is completely different from the measured topology [141. 

It is difficult to decide which approximation will be improved if a correction is now 
made to a pseudopotential by the direct incorporation of experimental data since the 
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sources of possible error are not easily separable. Equally, it is difficult to say how 
the pseudopotentials should be modified in a way that leaves essentially intact their more 
desirable features. However, it seems appropriate to focus on one aspect of constructing 
ab initio pseudopotentials, since it corresponds so closely to the fitting method used here 
for the demonstration case of an empirical pseudopotential. This is the somewhat arbitrary 
choice of the radius that separates the core region (which is smoothed in the creation of 
the pseudopotential) from the rest of space. This radius defines an effective atomic length 
scale, and perhaps ought not to be treated so arbitrarily (see [22] for an argument supporting 
a less arbitrary core radius). The Fermi surface has been used to fix this length scale in 
the example given above, and it is possible that this may be an acceptable procedure to fix 
the core radius, even for pseudopotentials that have far more physical content than that of 
equation (6). In regard to this, it should be noted again that within small variations of such 
length scales, many ab inirio pseudopotentials give quite acceptable values for structure and 
cohesive energies. 

It is certainly reasonable to ask [23] whether fitting the pseudopotential to measured band 
structure data. while improving the band structure, might not in general lead to a possible 
deterioration in other quantities (notably total energy). As already noted, the proposed 
adjustments are to be carried out within a range of insensitivity for structure and cohesion. 
But it is also appropriate to observe that the LDA to DFT, so successful in wide band systems, 
is still an approximation and there is no guarantee, even in principle, that it will reproduce 
the correct Fermi surface. We states near the Fermi surface are, however, important in 
transport and in some instances in electron order, such as pairing. Yet these states do not 
constitute a large fraction of the totality of occupied states, for which the LDA is apparently 
doing well. Accordingly, it would not be expected that the procedures suggested here will 
be inimical to existing pseudopotentials. 
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5. Further applications 

Since the single-particle Hamiltonian provides a fundamental, though approximate, 
description of a system, it is possible to use it to evaluate a number of properties. These 
properties can in turn be used to check the accuracy of the Hamiltonian by comparing the 
calculated properties either with experiment or with other calculations. Thus, as a first 
application, the ionic pair potential for aluminium is computed using the fitted screened 
pseudopotential simply as a check on the pseudopotential; it is found to give results 
in good aseement with those obtained by other authors. The electrical conductivity is 
then evaluated using the standard weak-scattering approximation as a way of testing this 
approximation. Rather poor agreement with experiment is found, indicating that the weak- 
scattering approximation is inadequate, but not, now, the input information to the calculation 
itself. 

The state-dependent ionic pair potential is determined within linear response theory; this 
is straightforward provided that the electron-ion interaction is known. Thus following [3] 

where up&, re) is the empty core pseudopotential forced, as noted, to fit (care being taken 
to ensure that eigenvalues are converged with respect to basis set size) to the correct band 
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structure, and U&) is the Coulomb potential. We have used the dielectnc function of 
equation (8); the resulting pair potential is plotted in figure 5. 

Recently other determinations of this pair potential have been carried out using both the 
empty core model, and optimized pseudopotentials [24]. They agree well with the potential 
shown in figure 5. Important features include the following: a repulsive edge at about 3 8 
and the lowest minimum at 4.4 8. There is also a small minimum in the core region which 
agrees with the non-relativistic core orbital result of [24J, but which stands in contrast to 
the empty core potential result given in that paper. It is worth noting that the location of 
this rmnimum is close to the nearest-neighbour separation for aluminium and the deepest 
minimum is near the second-nearest-neighbour separation. 

The resistivity can also be recalculated using the theory of Z i a n  (see, for example, 
[25]), from the expression 

where S ( k )  is the static structure factor for the liquid phase and @@/e2) has the numerical 
value of 21.7 pS2 cm. The pair potential given above is seen to have a very abrupt and 
steeply repulsive core which, following 12.51, motivates the use of a hard-sphere sbllcture 
factor given by 

S ( k )  = 1/[1 - nc(ku)l (13) 

where n is the density of ions, and the Omstein-Zernike direct correlation function c is 
given within the Percus-Yevick approximation [26] for the hard-sphere approximation to 
the pair potential. It is defined by 
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In equations (15) q is the packing fraction and U is the hard core radius (this has a value of 
2.43 A). We take q to be 0.45 (the value that most classical fluids have at their solidification 
point) and U is then given by 

A P Horsfield and N W Ashcmfl 

0 = (6rJ/xn)”3. (16) 

The dielectric function defined in equation (8) is also used in equation (12). The resistivity 
is calculated and found to be 78 pQ cm, whereas experiment 1251 gives 24.2 pQ cm. 
This is quite a significant discrepancy. We know now, by construction, that the electron- 
ion interaction is reliable (the pseudoptential has been forced to give good band structure 
results). We also know that the Percus-Yevick hard-sphere structure factor gives quite an 
accurate representation of the static structure factor of liquid aluminium. Accordingly the 
result indicates a limitation in the weak-scattering transport theory. The point of primary 
concern i s  the use of the first-order Born approximation which effectively asserts that an 
electron has lost all knowledge of one scattering event before it suffers another. But the mean 
free path is actually of the order of 16 A which is only a few atomic diameters. Thus we 
may conclude that the scattering events interfere, leading to a change in the total scattering, 
and hence a change in the resistivity. (See, for instance, [20.25, 271 for earlier discussions 
of the validity of the first-order Born approximation in the calculation of resistivity, given 
at a time when pseudopotentials were somewhat less reliable than they are now.) 

6. Summary 

The accurately determined energy levels at the W point of the FCC Brillouin zone obtained 
from de Haas-van Alphen measurements of the Fermi surface of aluminium are used in 
two ways. First, an empirical local pseudopotential with one fiee parameter (rc) is directly 
determined by these energy levels. Second, they are used to test the precision of the 
standard scheme for calculations of band structure (involving a combination of the LDA 
for the exchange-correlation function within the KohnSham formulation of DFT, with ab 
initio pseudopotentials for the eleceon-ion interaction). It is found that the standard scheme 
appears to reproduce the third-zone Fermi surface dimensions rather poorly, but at present 
it is not possible to say how much of the error is to be ascribed to the pseudopotential, how 
much to LDA, and how much to DFT. In spite of this, it is proposed that pseudopotentials can 
be constructed which accurately reproduce one-particle structure near the Fermi energy. An 
example of such a construct is applied to the evaluation of the ionic pair potential of molten 
aluminium (which is found to be in good agreement with the pair potentials calculated by 
Hafner and Jank [24]). It is also used to determine the electrical conductivity of molten 
aluminium, and is found to give poor agreement with experiment (which reveals somewhat 
more clearly the limitations of the first-order Bom approximation). 
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Appendix. Folding down of the secular equation 

From the Kohn-Sham equations we know that the Schrodinger-type equation includes 
a Hamiltonian that is dependent on the electron density of the system for which the 
calculation is being performed. Now suppose this density were known (which in general 
it is not, and has to be found through imposition of a self-consistency procedure). It 
is then possible to solve for the eigenvalues and eigenvectors of the Hamiltonian in the 
following way: take a basis of plane waves, and find the matrix elements of the Hamiltonian. 
Because of the translational symmetry of the system, only matrix elements of the form 
H a ,  = (k + GlHlk + G') are non-vanishing. Here k is a vector from the first Brillouin 
zone for the crystal lattice, and G and G' are reciprocal lattice vectors. These matrix 
elements are then used in the solution of the following matrix equation 

This equation can be represented In block sbllcture by the diagram shown in figure AI. 
Here, the Hamiltonian matrix has been formally partitioned into four parts; A and C are 
square submanices, and B and Bt are (in general) rectangular. The corresponding partition 
of the eigenvector is U and V .  The purpose of introducing the block structure is that the 
matrix equation H+ = nl, can be rewritten as 

A U + B V  =ELI B'U + CV = E V .  (A2) 

In turn this can be rearranged to give 

(A - B(C - &l)-'Bt)U = EU. (-43) 

(Note that alternative derivations can be found in [28].) The significance of this equation is 
that we began with a very large secular equation and have formally reduced it to a smaller 
one that yields the same eigenvalues and even part of the same eigenvectors. However, the 
new manix is now dependent on energy, and if the potential had originally been local, the 
effectlve potential in the reduced matrix is now non-local. To see this last point, let us look 
at the structure of the reduced matrix H, namely 

where the subscript + indicates that the reciprocal lattice vector appears in the submatrix 
C and the absence of the subscript means it appears in the submattiix A. We imagine that 
the eigenvalues to be evaluated are quite different from the diagonal terms of submatrix C. 
Thus the terms along the diagonal of C - &I are non-vanishing. If the off-diagonal terms 
are negligible by comparison with the diagonal terms, then the inverse of C - EI can be 
given approximately by the diagonal matrix with the reciprocal of the diagonal elements of 
C - EI down its diagonal. This then gives us the following approximation 
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;R 
Figure Al.  Block swchn'e diagram representation of 
the &ix equation. 

We can now see that if the potential in H depended on C and G' only as G - G' (that is, 
if the potential were local), then the corresponding terms in the reduced matrix will depend 
on G and G' in a much more complex manner (in fact the equivalent potential is non-local). 

In a particular form of the empirical pseudopotential method, a relatively small mabix 
fi is assumed, the off-diagonal matrix elements of which are treated as free parameters. 
It is usual to treat these elements as though they were derived from a local potential, and 
hence their dependence is only on the difference of wave vectors. The values of these 
matrix elements are then determined by requiring that the band structure produced by these 
matrix elements agree with some experimentally provided data. These matrix elements can 
only be used to produce accurate results in the matrix in which they appeared for the fitting. 
If they need to be used in a matrix of different size, then the process of folding down the 
matrix has to be reversed to regain the original H m ,  before being refolded to obtain the 
new matrix. 
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